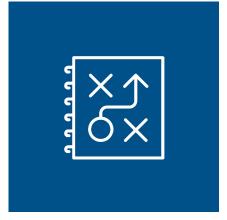
March 7, 2023

Engineering & Inspections

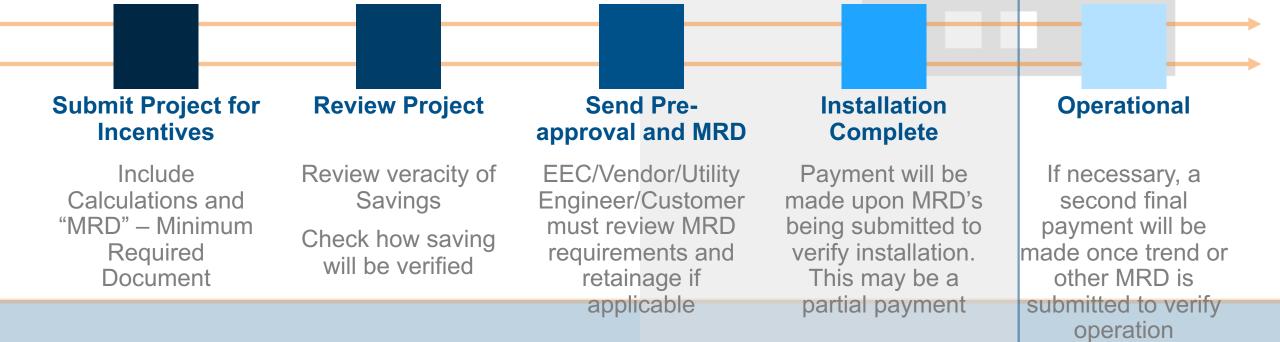
Brendan Giza-Sisson, Eversource Gary Pattavina, AVANGRID

PROUD SPONSORS OF


BROUGHT TO YOU BY

We look forward to hearing from you

Please put all your questions into the questions section with this icon.


Engineering and M&V for Complex Energy Projects

Inspection Process

Two Priorities - Complex Projects And Inspections

Sample Minimum Required Document (MRD) Language

EQUIPMENT: Provide a list of equipment or materials installed as part of this project. Include equipment counts, HP, kW, efficiency and capacity ratings, rating conditions, location of controls hardware, etc.

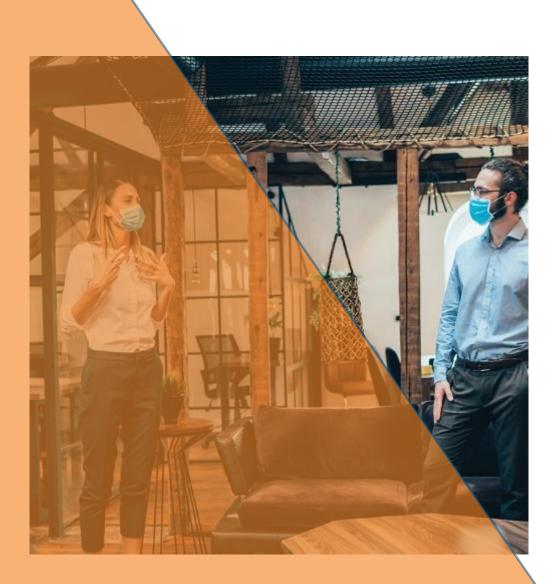
		Project Design Intent	Post Inspection Findings
Yes 🗋 No 🗖	1.	System Controller (basis of design: Konvetka) – Demand dependent regulation of the entire energy recovery system (circulation pumps, valves, bypass, etc.), including controller hardware and software, display unit for energy efficiency, temperatures, and volumetric flows.	
Yes 🗋 No 🗋	2.	(2) 200 HP centrifugal pumps (one is stand-by) – GLYP-1 and GLYP-2 Each equipped with VSDs	
Yes 🛛 No 🖵	3.	(5) Plate & Frame heat exchangers – HR-P&F-1,-2,-3,-4,-5	
Yes 🛛 No 🖵	4.	 Supply and exhaust energy recovery coils: Supply SHRCs 1-5 (AHU-1-5) Supply SHRCs 6-7 (HVU-1, HVU-2) Exhaust SHRCs 1-5 (EAHU-1-4) 	

Step 1: Define Equipment

Sample MRD Language

SEQUENCES OF OPERATION: Provide a description of equipment operating sequences, setpoints, operating schedules, balancing requirements (flow, velocity, head, etc.) or any other required operating parameters. Describe requirements separately.

Yes D No D 6. The heat recovery system attempts to maintain the AHU pre-heat coil leaving air temperature of 55.2F db during winter conditions and 80.3 F db/69.6 F wb during summer conditions. During winter operation, heating from the boiler plant may be required to supplement the heat recovery.	
--	--


Step 2: Define How Equipment will Operate

Sample MRD Language

POST INSTALLATION VERIFICATION: Provide a list of controls and monitoring capabilities required to verify proper system operation. Trends should document operational sequences, set points and scheduling of equipment as described in TA Study.

Yes 🗖 No 🗖	 To verify proper operation of the system, a trend report from the Building Automation System must be provided. The following points shall be trended for a minimum of 2 weeks. Data samples should be taken at no greater than 1 minute intervals. 	
	 AHU glycol loop supply pre-heat coil air entering temperature (outside air dry- bulb temperatures 	
	AHU glycol loop supply pre-heat coil air leaving temperature	
	EAHU glycol loop exhaust heat recovery coil air entering temperature	
	EAHU glycol loop exhaust heat recovery coil air leaving temperature	

Step 3: Planned Installation Verification

Update to Inspection Process

Inspection Process Improvements

Please let us know of any as-built changes to project before we inspect

Improved Inspection tracking

Failure rates, common discrepancies, # of inspections

Continual Improvement

Vendor Scorecards and feedback

Inspection performance

Track inspection timeliness, quality, quantity

Questions

March 6, 2023

Thank you

Gary Pattavina Lead Energy Engineer AVANGRID gary.pattavina@uinet.com

Brendan Giza-Sisson Manager, Energy Efficiency Eversource

david.giza-sisson@eversource.com

PROUD SPONSORS OF

BROUGHT TO YOU BY

CNG SCG UI Part of the AVANGRID Family